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Abstract

Order estimation and spurious mode elimination concerning the subspace identification technique are
discussed in this paper. To avoid underestimating the state space model order, order estimate is given in
terms of component energy index rather than matrix singular values. Component energy index is
introduced to measure the energy contribution of signal components. Based on order estimation, spurious
modes resulting from noise and model redundancy are indicated by an alternative stabilization diagram
which reflects the variation of parameter estimates with row increments of the Hankel matrix. Two
numerical examples and one experimental example on the parameter estimation of a cable-stayed bridge
model are presented to demonstrate the efficacy of component energy index and the alternative stabilization
diagram.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The traditional identification techniques that extract modal parameters from input and output
data have been well developed and widely used in engineering. However, it is often a hard task to
carry out excitation in field testing of large engineering structures. To obviate such difficulties of
the traditional techniques, methods of extracting modal parameters from structural response data
only (blind techniques) have been deeply investigated during the past few decades [1–6]. Among
these techniques, the natural excitation technique (NExT), random decrement technique (RDT),
frequency domain decomposition (FDD) and stochastic subspace identification (SSI), etc., can
see front matter r 2004 Elsevier Ltd. All rights reserved.
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give good results [7–10]. Using structural response data only will reduce the complexity of modal
testing and increase the flexibility of implementation. It is this essential feature that makes these
blind techniques more attractive than the traditional ones.
Subspace identification techniques have got many engineering applications. They are based on

the state space model of input/output signals and identification is realized by extracting system
matrices from input/output signals or output signals only. In the formation of system matrices,
the singular value decomposition (SVD) technique is usually used to filter noises and estimate the
state space model order [11–15]. When extracting modal parameters with subspace identification
techniques, model order should be overestimated in order to model weak signals and it is usually
given in terms of singular values. Since a redundant model is used, the interference of spurious
modes that result from noises and computation error occurs inevitably in estimated results.
Therefore, it is necessary to completely identify and remove spurious modes. So far there have
been many criteria such as MAC and MAmC, etc., that can be used to validate estimated modal
parameters [16]. Besides these criteria, the stabilization diagram which reflects the variation of
estimated modal parameters with model order increments is also an effective means used to
indicate spurious modes and determine system order which, in practice, cannot be given simply in
terms of singular values [17].
Since singular values are not always reliable to indicate model order, this paper gives a new

approach to order estimation. The method estimates model order in terms of component energy
index (CEI), which is presented to improve the way of order estimation, i.e. to avoid
underestimating of model order. CEI can also indicate the energy contribution of signal
components. Based on the estimation of model order, an alternative stabilization diagram is
proposed to show the dependence of estimated parameters on the row increments of Hankel
matrix and further to indicate spurious modes.
Section 2 is the introduction of subspace identification technique and the definition of CEI. The

procedure of generating a stabilization diagram is presented in Section 3. Sections 4 and 5 are
examples presented to demonstrate the efficacy of CEI and the alternative stabilization diagram.
Concluding remarks are given in Section 6.
2. Identification from response data

Consider the following linear time invariant (LTI) system described by a discrete state space
model:

xðk þ 1Þ ¼ AxðkÞ þ BwðkÞ,

yðkÞ ¼ CxðkÞ þ DwðkÞ, ð1Þ

where A 2 RN�N ; B 2 RN�P; C 2 RL�N ; D 2 RL�P are the system matrix, the input matrix, the
output matrix and the direct feedthrough matrix, respectively. xðkÞ 2 RN is the state vector,
yðkÞ ¼ ðy1; y2; . . . ; yLÞ

T
2 RL is the measured output, wðkÞ 2 RP is the zero mean white noise

vector with covariance matrix EðwðkÞwðkÞTÞ ¼ I and I 2 RP�P is the identity matrix [15]. k is the
discrete time and kX0: N is the model order (the LTI system order), P and L are the number of
inputs and outputs, respectively.
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From Eq. (1), we can obtain

yði þ 1Þ ¼ AyðiÞ þ BsðiÞ,

rðiÞ ¼ CyðiÞ þ DsðiÞ, ð2Þ

where rðiÞ ¼ EðyðkÞyTðk � iÞÞ; yðiÞ ¼ EðxðkÞyTðk � iÞÞ and sðiÞ ¼ EðwðkÞyTðk � iÞÞ are the second-
order statistics (auto/cross-correlation), i ¼ 0; 1; 2; . . . : Note that sðiÞ ¼ 0; 8iX1 [18]; the
recursive structure of Eq. (2) implies

R ¼ GY, ð3Þ

where

R ¼

rð1Þ rð2Þ 	 	 	 rðqÞ

rð2Þ rð3Þ 	 	 	 rðq þ 1Þ

..

. ..
. . .

. ..
.

rðpÞ rðp þ 1Þ 	 	 	 rðp þ q � 1Þ

2
6666664

3
7777775
; G ¼

C

CA

..

.

CAp�1

2
666664

3
777775,

Y ¼ ðyð1Þ; yð2Þ; . . . ; yðqÞÞ and pL; qL4N.

In practice, rðiÞ is approximated by r̂ðiÞ; which is estimated from finite samples, i.e.

r̂ðiÞ ¼ rðiÞ þ noise

¼
1

M

XMþi�1

k¼i

yðkÞyTðk � iÞ; M40; i ¼ 0; 1; 2; . . . , ð4Þ

but for an ergodic process, r̂ðiÞ ! rðiÞ as M ! 1: The approximation of R, denoted as R̂; can be
obtained by replacing element rðiÞ in R with r̂ðiÞ: As a result, R̂ is contaminated by noises. In order
to reduce noise contamination, SVD is adopted to remove noises from the Hankel matrix R̂:
Suppose the SVD of R̂ is given as follows:

R̂ ¼ ½U1 U2
S1

S2

� 	
VT

1

VT
2

" #
¼ U1S1V

T
1 þ U2S2V

T
2 ð5Þ

and S1 has N dominant singular values that are far greater than the rest of S2; then U1S1V
T
1 can

be taken as a better approximation of R. In Eq. (5), U1 corresponds to the signal subspace of R̂: In
terms of the shift structure of G;C and A can be computed as [15]

C ¼ U1ð1 : L; 1 : NÞ,

A ¼ Uþ
1 ð1 : aL; 1 : NÞU1ðL þ 1 : ðaþ 1ÞL; 1 : NÞ, ð6Þ

where U1ð1 : L; 1 : NÞ is the submatrix formed by rows 1–L and columns 1–N of U1; Uþ
1 is the

generalized inverse of U1; and a is an integer satisfying aL4N: From A and C, natural
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frequencies, damping ratios and the normalized mode shapes can be given as

oj ¼ jf s lnðljÞj,

xj ¼ �Reðf s lnðljÞÞ=jf s lnðljÞj; j ¼ 12N,

fj ¼ Cgj=jjCgjjj, ð7Þ

where fljg and fgjg are the eigenvalues and eigenvectors of A, respectively, f s is the sampling
frequency.
In general cases, however, no obvious gap exists between any two adjacent singular values due

to noise contamination. Therefore, noise modes cannot be completely filtered even using singular
value decomposition. In order not to lose any physical modes, especially those of small energy, U1

should have sufficient number of columns, which will in most cases result in a redundant model
and correspondingly spurious modes that belong to the redundant model but not the LTI system.
To reduce the number of spurious modes, model order should be properly determined. In this
paper, we use component energy index to indicate the model order. Using energy index instead of
singular values is based on the fact that singular values cannot indicate the energy contribution of
each mode, and consequently they cannot show which modes are of strong observability and
which are of weak observability. CEI is introduced to indicate the energy contribution of each
mode. The computation of CEI is based on the fact that the autocorrelation sequence
fEðylðkÞylðk � iÞÞji ¼ 1; 2; 3; . . .g can be given as the superposition of exponentially decayed
sequences, i.e.

EðylðkÞylðk � iÞÞ ¼
XN

j¼1

cjll
i
j; i ¼ 1; 2; 3; . . . ; l ¼ 1; . . . ;L, ð8Þ

where the coefficient cjl ðj ¼ 1; . . . ;N; l ¼ 1; . . . ;LÞ is a complex and eigenvalues l1–lN are
mutually distinct. Eq. (8) can be derived directly from the solution of Eq. (2) to the initial
condition yð0Þ and the impulse load fsð0ÞdðiÞji ¼ 0; 1; 2; . . .g; which is of the following form [19]:

rðiÞ ¼ Dsð0ÞdðiÞ þ
XN

j¼1

Cjl
i
j; i ¼ 0; 1; 2; . . . ,

where dðiÞ is the unit impulse function and Cj ðj ¼ 1; . . . ;NÞ is an L � L complex matrix.
In light of Eq. (8), the component energy index is given as follows. First, use eigenvalues

fljjj ¼ 1; . . . ;Ng to construct base vectors which are grouped into a matrix E:

E ¼ ½L1 L2 	 	 	LN , ð9Þ

where Lj ¼ ð1 lj 	 	 	 l
q�1
j Þ

T; j ¼ 1; . . . ;N: Next, compute u ¼ ðtrðr̂ð1ÞÞ trðr̂ð2ÞÞ 	 	 	 trðr̂ðqÞÞÞT; where
trð	Þ denotes the trace of a matrix, and expand u with respect to the vectors fLjjj ¼ 1; . . . ;Ng:

u ¼
XN

j¼1

LjF j ¼ EF , ð10Þ
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where F ¼ ðF1 F2 	 	 	FNÞ
T is a complex vector. Then, solve Eq. (10) and extract the components

from u:

F ¼ Eþu,

�j ¼ L2j�1F2j�1 þ L2jF2j; j ¼ 1; 2 . . . ;N=2, ð11Þ

where Eþ is the generalized inverse of E and �j is a component of u: Finally, define the energy
index as

CEIðjÞ ¼
ffiffiffiffiffiffiffiffi
�Hj �j

q
; j ¼ 1; 2; . . . ;N=2, ð12Þ

where CEIðjÞ is the jth component energy index and the superscript H denotes complex conjugate
and vector transpose. As we know, the Fourier spectrum of u can give energy information of all
modes, but there may exist large errors in the spectrum peak positions due to the limited
frequency resolution. In contrast, CEI can indicate the energy contribution of each mode at a
frequency closer to the exact one.
3. An alternative stabilization diagram

The order stabilization diagram is devised to reflect the variation of estimates with order
increments. With the increase in model order, the number of spurious modes also increases, which
may result in increasing interference of spurious modes. In practice, estimates depend not only on
model order but also on the correlation sequence fr̂ðiÞjiX0g as defined by Eq. (4). With more r̂ðiÞ
appended to the Hankel matrix R̂; spurious modes will have large variations in frequency and
damping ratio. When model order is fixed, the variation of estimates with row increments of R̂
constitutes another form of stabilization diagram. To obtain this form of diagram, we give the
following procedure:
(i)
 Estimate model order in terms of CEI. Suppose the order is n, greater than the system order
N.
(ii)
 Construct a submatrix R̂ð1 : bL; 1 : nÞ from R̂; b is an index number and satisfies bL4N:

(iii)
 Compute the QR decomposition of R̂ð1 : bL; 1 : nÞ: Suppose R̂ð1 : bL; 1 : nÞ ¼ QR:

(iv)
 Estimate C;A form Q according to Eq. (6), i.e.

C ¼ Qð1 : L; 1 : NÞ,

A ¼ Q
þ
ð1 : ðb� 1ÞL; 1 : NÞQðL þ 1 : bL; 1 : NÞ.
(v)
 Compute frequencies, damping ratios and normalized mode shapes according to Eq. (7).

(vi)
 Increase index b ðbþ 1 ! bÞ and go to step (ii).
Using QR decomposition instead of SVD in the above procedure is to reduce computation
complexity. In general, QR decomposition can give the range space of R̂ð1 : bL; 1 : nÞ except in
extreme cases where the rank deficiency of R̂ð1 : bL; 1 : nÞ cannot be found. The feature of the
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above procedure is that the number of spurious modes is less than the assumed model order n and
step (iii) can be realized in a recursive style [20].
In the following sections, examples on model order estimation and modal parameter

identification are given to demonstrate the efficacy of CEI and stabilization diagram.
4. Numerical examples

4.1. Order estimation of a system with closely spaced modes

Consider a system whose free response comprises four exponentially decayed components:

yðtÞ ¼ expð�15tÞ cosð100ptÞ þ expð�30tÞ cosð101ptÞ

þ expð�45tÞ cosð102ptÞ þ expð�60tÞ cosð103ptÞ.

Eigenvalues of the system are �2:3873� 50:0i;�4:7746� 50:5i;�7:1620� 51:0i and �9:5493�
51:5i: To estimate these eigenvalues from yðtÞ; 1000 points are sampled at the rate of 500Hz and a
12th order model is used. Table 1 gives the estimated results. As shown in the table, eigenvalues
are accurately estimated. The important result is that singular values of the Hankel matrix R̂ as
defined by Eqs. (4) and (5) cannot give a clear order indication, whereas CEIs definitely indicate
that there are four dominant modes, which implies that using singular values may yield an
underestimated order when there exist closely spaced modes. In the table, every eigenvalue is
connected with an index from which we can know the energy contribution of the corresponding
modal vibration. Therefore, the efficacy of CEI in this example is obvious.
Table 1

CEIs and singular values

No. Estimated eigenvalue CEI Singular value

1 �2:3873� 50:0i 66:516 256:58

241:34
2 �4:7746� 50:5i 34:140 5:7081

3:7479
3 �7:1620� 51:0i 22:531 0:0261

0:0103
4 �9:5493� 51:5i 16:310 9:6044e2006

2:8491e2006

5 �35:811� 194:14i 1:03� 10�7 6:8769e2014

5:0699e2014

6 �16:726� 197:27i 8:29� 10�8 2:2156e2014

1:1655e2014



ARTICLE IN PRESS

1

4

3

F(t)
2

Ea Eb

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-60

-40

-20

0

20

40  FRF1
 FRF2
 FRF3
 FRF4

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0
 Singular Value
 Energy Index

N
or

m
al

iz
ed

 V
al

ue

Number 0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

R
o

w
 In

cr
em

en
ts

Frequency (Hz)

Ea 1 2 3 Eb
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue

Location

Second
Third

 First

 Fourth

(a) (b)

(c) (d)

(e)

Fig. 1. (a) A vibration system with four masses. (b) Frequency response functions. (c) Normalized singular values and

CEIs. (d) Stabilization diagram. (e) Estimated mode shapes of the beam.
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4.2. Parameter estimation of a system of 4 degrees of freedom

Consider a vibration system that consists of a lumped beam and a vibration absorber
(Fig. 1(a)). Stiffness of the absorber is elaborately adjusted so that there are two closely spaced
modes. Natural frequencies of the system are 22.86, 108.45, 112.54 and 249.67Hz. The whole
system is lightly damped and damping ratios of the four modes are 0.017, 0.0037, 0.0035 and
0.0016 (in ascending order). To identify mode shapes of the beam, white noise excitation is loaded
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Table 2

Estimated frequencies and damping ratios

Order 1 2 3 4

Frequency (Hz) 22.89 108.53 112.69 249.71

Damping ratio 0.019 0.0038 0.0047 0.0013

Y. Zhang et al. / Journal of Sound and Vibration 282 (2005) 367–380374
at Mass 1 and acceleration responses of masses 1–3 are measured simultaneously. The sampling
rate is 1000Hz and 8192 samples/channel are collected. FRFs corresponding to the four masses
are given in Fig. 1(b), from which we can see that the third mode is unobservable at masses 2 and
4. To give an order estimate, a 16th order model is initially used. The comparison of normalized
singular values and CEIs (Normalization is defined as dividing each singular value and CEI by the
maximum singular value and CEI, respectively) is given in Fig. 1(c), which illustrates that CEI is
more effective in order indication than singular value. Since the model is redundant, spurious
modes are inevitable. Although the first four pairs of CEIs in Fig. 1(c) correspond to the four
natural modes, in order to further verify that there are no more physical modes, stabilization
diagram is also applied to show the variation of estimated frequencies. Fig. 1(d) is the frequency
stabilization diagram which is derived from a 12th-order model. In the figure, spurious and
physical modes are clearly separated, which demonstrates the 12th-order model is sufficient.
Table 2 gives the estimated parameters which are very close to the exact values. Estimated mode
shapes are shown in Fig. 1(e), which also illustrate that the third mode is unobservable at masses 2
and 4 since mass 2 is located exactly at the node position.
5. Parameter identification of a cable-stayed bridge model

5.1. Measurement and excitation of the bridge model

The bridge model as shown in Fig. 2(a) has two bridge towers and 40 steel cables. Distance
between the two towers is 2000mm and the model span is 4000mm. In order to identify bending
and torsional modes of the bridge model, 14 accelerometers were symmetrically placed on the
bridge body and one shaker was used to give white noise excitation (Fig. 2(b)). The longitudinal
distance between any two adjacent accelerometers is 600mm, and the transverse distance is almost
the width of the bridge model. The shaker is 200mm away from the center. At each measurement
point, 4096 samples were collected at the rate of 125Hz.

5.2. Frequency estimation by time–frequency analysis

From the measured data, natural frequencies can be approximately estimated by time–-
frequency analysis [21,22]. Time–frequency representation (TFR) can reflect signal components in
the time–frequency domain. Using TFR in this example is to give a coarse estimation of natural
frequencies as well as to examine whether response signals have time-varying characteristics that
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Fig. 2. (a) Sketch of the cable-stayed bridge model. (b) Measurement and excitation locations.

Fig. 3. (a) Time–frequency representation of the normalized autocorrelation sequence of Point 5. (b) Time–frequency

representation of the normalized autocorrelation sequence of Point 9.
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may be caused by model nonlinearities. Fig. 3(a) and (b) are TFRs of the normalized
autocorrelation (NAC) sequences corresponding, respectively, to points 5 and 9. TFRs of other
points are similar to these two figures, which indicates the response signals are stationary. From
all TFRs of the 14 points natural frequencies are found to be near 9, 19, 25, 27, 31, 37, 43, 48 and
53Hz.

5.3. Parameter estimation by subspace identification technique

According to the procedure given in Section 3, model order should be estimated at first. To this
end, a redundant model of order 40 is used to obtain CEIs. Fig. 4 gives the normalized singular
values and CEIs (as defined in Section 4.2). In terms of CEIs, a 36th-order model is shown to be



ARTICLE IN PRESS

0 4 8 12 16 20 24 28 32 36 40
0.0

0.2

0.4

0.6

0.8

1.0

 SV
 CEI

N
or

m
al

iz
ed

 V
al

ue

Number

Fig. 4. Normalized singular values and CEIs.

Fig. 5. (a) Stabilization diagram—frequency versus row increments of R̂ð1 : bL; 1 : nÞ: (b) Stabilization diagram—

frequency versus model order increments.
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sufficient to model all signal components. As the model is redundant, there exist many spurious
modes in the estimated results. In order to identify and remove these modes, a stabilization
diagram is constructed to reflect the variation of estimated frequencies. In Fig. 5(a), 10 of the 13
modes keep almost unchanged to the row increments of the matrix R̂ðl : bL; 1 : nÞ and those
modes with damping ratios greater than 0.1 are not shown. Eigenvalues and CEIs corresponding
to the ten ‘‘stable’’ modes are given in Table 3, where CEI is connected with each mode to indicate
its energy contribution. Compared with the results given by TFR, the ten modes can be
considered reliable. Table 4 gives the estimated frequencies and damping ratios, where the results
by FDD technique are also presented as a comparison.
Fig. 5(b) is the diagram where the variation or stabilization of frequencies with model order

increments is illustrated. The initial model order is 20 and the maximum order increment is 36. In
the diagram, interference of spurious modes appears stronger than that of Fig. 5(a). Generally,
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Table 4

Estimated natural frequencies and damping ratios

Frequency (Hz) Damping ratio

Order Subspace identification FDD Subspace identification FDD

1 9.59 9.6 0.078 0.104

2 19.23 19.1 0.039 0.022

3 21.13 — 0.093 —

4 24.03 24.1 0.089 0.067

5 27.62 27.5 0.044 0.061

6 31.37 — 0.056 —

7 37.87 37.7 0.061 0.052

8 42.72 — 0.054 —

9 48.85 48.7 0.030 0.046

10 52.49 — 0.032 —

Table 3

Estimated eigenvalues and CEIs

Order Eigenvalue CEI

1 �0:75� 09:56i 0.1388

2 �0:74� 19:21i 0.2222

3 �1:96� 21:04i 0.0200

4 �2:14� 23:93i 0.2803

5 �1:21� 27:59i 0.3038

6 �1:76� 31:32i 0.0888

7 �2:31� 37:80i 0.1944

8 �2:30� 42:66i 0.1203

9 �1:46� 48:82i 0.2290

10 �1:67� 52:47i 0.1398
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using a high-order model is necessary to model weakly observable modes but at the same time
introduces spurious modes which should be carefully dealt with. The comparison between Fig.
5(a) and (b) shows that the alternative stabilization diagram is more effective in this example.

5.4. Estimated mode shapes

According to the identified results, the bridge model has 10 observable modes within the
analysis band. The corresponding mode shapes are illustrated in Fig. 6(a–j). Among these modes,
the first is a bending mode and the second mode in fact vibrates up and down (not reflected in the
figure). The third mode is also a bending mode but its ends are antisymmetric. The eighth mode is
almost a torsional mode and the rest have both bending and torsional deflections. Some of these
shapes such as the second are closely related to the vibration of cables, which implies that the
cable vibration has a significant effect on the bridge body.
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Fig. 6. Estimated mode shapes.
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6. Conclusion

It is of great significance to develop techniques for modal parameter identification from
response data only. The subspace identification technique has been employed to estimate the
modal parameters of a theoretical system as well as a cable-stayed bridge model. Two issues have
been addressed in the paper: one is concerned with model order estimation and the other with
spurious mode elimination. On order estimation, a new method has been introduced to enhance
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the SVD-based order estimation technique, which is realized by connecting each mode with a
quantitative index—CEI. Also investigated is an alternative stabilization diagram that reflects the
variation of frequencies with the row increments of the Hankel matrix and further indicates
spurious estimates. Examples have been presented to demonstrate the efficacy of the proposed
methods and results have shown that singular values may indicate an underestimated model order
whereas the proposed CEI appears preferable in order estimation. A redundant model inevitably
results in spurious modes, but in the identification of modal parameters of the bridge model,
spurious modes are completely identified with the help of the alternative stabilization diagram.
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